|
|
Регистрация Восстановить пароль |
Регистрация | Задать вопрос |
Заплачу за решение |
Новые сообщения |
Сообщения за день |
Расширенный поиск |
Правила |
Всё прочитано |
|
Опции темы | Поиск в этой теме |
08.09.2023, 10:58 | #1 |
Пользователь
Регистрация: 27.03.2023
Сообщений: 25
|
Перестал работать код при переходе с Win на Lin
На Win код распозновал лица и записывал результат в книгу excel, при переходе на Lin Ubuntu, код запускается и вылетает. поменял вот эту строку rgb_small_frame = small_frame[:, :, ::-1] на эту
rgb_small_frame = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB), код стал работать криво import face_recognition import cv2 import numpy as np import openpyxl import pandas as pd from datetime import datetime excel_data_df = pd.read_excel('result.xlsx', sheet_name='Sheet', header=None) excel_data_df.iloc[:,1:] = excel_data_df.iloc[:,1:].apply(lambda x: pd.to_datetime(x).dt.date) list = excel_data_df.values.tolist() k = datetime.now().date() # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the # other example, but it includes some basic performance tweaks to make things run a lot faster: # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam. # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it. sam_image = face_recognition.load_image_file("s am.jpeg") sam_face_encoding = face_recognition.face_encodings(sam _image)[0] # Load a second sample picture and learn how to recognize it. sama_image = face_recognition.load_image_file("s ama.jpeg") sama_face_encoding = face_recognition.face_encodings(sam a_image)[0] # Create arrays of known face encodings and their names known_face_encodings = [ sam_face_encoding, sama_face_encoding ] known_face_names = [ "sam", "sama" ] # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # Grab a single frame of video ret, frame = video_capture.read() # Only process every other frame of video to save time if process_this_frame: # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb _small_frame) face_encodings = face_recognition.face_encodings(rgb _small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(know n_face_encodings, face_encoding) name = "Unknown" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(know n_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) # c = name for i in range(len(list)): for j in range(len(list[i])): if name in list[i]: if k not in list[i]: list[i].append(k) excel_data_df = pd.DataFrame(list) for row in list: print(' '.join([str(elem) for elem in row])) excel_data_df.to_excel (r'result.xlsx', sheet_name="Sheet", index= False, header= False, ) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() |
Похожие темы | ||||
Тема | Автор | Раздел | Ответов | Последнее сообщение |
Перестал работать запрос при переходе с mySQL 5.5 на mySQL 8.0 | volni | SQL, базы данных | 3 | 13.04.2021 15:26 |
Программа перестает работать при переходе на другое приложение | A1978 | Общие вопросы Delphi | 2 | 09.12.2016 22:06 |
Перестал работать код | Оксана33 | Microsoft Office Excel | 6 | 07.10.2015 21:10 |
Перестал работать css | impulsgraw | HTML и CSS | 8 | 22.08.2011 21:28 |
перестал работать cd-rom | Betty | Компьютерное железо | 7 | 22.08.2009 09:10 |