Форум программистов
 

Восстановите пароль или Зарегистрируйтесь на форуме, о проблемах и с заказом рекламы пишите сюда - alarforum@yandex.ru, проверяйте папку спам!

Вернуться   Форум программистов > IT форум > Помощь студентам
Регистрация

Восстановить пароль

Купить рекламу на форуме - 42 тыс руб за месяц

Ответ
 
Опции темы Поиск в этой теме
Старый 18.04.2010, 18:36   #1
JonnyStells
 
Регистрация: 18.04.2010
Сообщений: 6
По умолчанию Арккосинус

y=arccos(x).
Дело в том, что область определения арккосинуса - от -1 до 1. А икс пробегает от -пи до пи. Соответственно надо найти игрек на всем интервале от -пи до пи. Как это численно запрограммировать?
JonnyStells вне форума Ответить с цитированием
Старый 18.04.2010, 23:54   #2
strider
 
Регистрация: 03.04.2008
Сообщений: 6
По умолчанию

Область определения arccos - от 0 до 2пи, поэтому арккосинус иска от -пи до пи ты никак не запрограммируешь.
strider вне форума Ответить с цитированием
Старый 19.04.2010, 11:02   #3
Vago
Форумчанин
 
Регистрация: 15.01.2010
Сообщений: 948
По умолчанию

Цитата:
Сообщение от strider Посмотреть сообщение
Область определения arccos - от 0 до 2пи
Область определения arccos - [-1,1].
Цитата:
Сообщение от JonnyStells
область определения арккосинуса - от -1 до 1. А икс пробегает от -пи до пи. Соответственно надо найти игрек на всем интервале от -пи до пи. Как это численно запрограммировать?
Проверять предварительно, попал ли x в интервал [-1,1] или нет. Если попал - вычислять, ежели нет - выдавать сообщение о том, что аргумент оказался вне области определения.
Vago вне форума Ответить с цитированием
Старый 19.04.2010, 22:22   #4
JonnyStells
 
Регистрация: 18.04.2010
Сообщений: 6
По умолчанию

Vago, дело как раз в том, что позарез нужен игрек вне его области определения. Иначе я бы и сам догадался. Вне интервала [-1,1] можно получить комплексные значения игрека. Эти значения должны дальше использоваться в качестве пределов интегрирования в физической задаче. Поэтому комплексность никуда не годится. Отбрасывать от комплексного числа мнимую часть - тоже как-то не так...
Может, с помощью какого-нибудь численного метода все же можно получить что-нибудь действительное?
JonnyStells вне форума Ответить с цитированием
Старый 20.04.2010, 09:54   #5
Vago
Форумчанин
 
Регистрация: 15.01.2010
Сообщений: 948
По умолчанию

Цитата:
Сообщение от JonnyStells Посмотреть сообщение
Вне интервала [-1,1] можно получить комплексные значения игрека. Эти значения должны дальше использоваться в качестве пределов интегрирования в физической задаче. Поэтому комплексность никуда не годится.
Точно не годится? Может, там интеграл по контуру имеет смысл?
Vago вне форума Ответить с цитированием
Старый 20.04.2010, 10:10   #6
JonnyStells
 
Регистрация: 18.04.2010
Сообщений: 6
По умолчанию

Точно не годится. Пределы интегрирования должны быть конечными действительными числами. А интеграл по контуру не спасает.
JonnyStells вне форума Ответить с цитированием
Ответ


Купить рекламу на форуме - 42 тыс руб за месяц